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Projection methods for solving nonlinear systems of
equations
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Abstract

l'his paper describe_ several nonlinear projection methods based on Krylov sub-

spaces and analyzes their convergence. The prototype of these methods is a technique

that generMizes the conjugate direction method by minimizing the norm of the func-

tion F over some subspace. The emphasis of this paper is on nonlinear least squares

problems which can also be handled by this general approach.
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1 Introduction

JJ_._"c!ass of :_.wtho,is },ase, l ,m projecti-::s outo l(ry!ov s,,bst)_tces ha._:t),'o,,'e,_ (iv,it(, ef[ective

in the solution of a wide range of problems in scientific computing. Because of the success of

these methods in handling linear systems of equations and large eigenvalue problems, much

effort has recently been devo'_ed to extending their applicability to the solution of other types

of problems. For example, there has been substantial progress made in using these methods

for nonlinear equations arising in computational fluid dynamics [11,15]. In addition, recent

work has shown how they can be used to solve equations in control theory such as Lyapunov

equations [13], and there is current interest in solving time dependent partial differential

equations by the method of lines [9].

The purpose of this paper is to present some of the ideas used in general nonlinear

projection methods with particular attention give,' to nonlinear Krylov subspace methods.

Algorithms of this family have been presented in [5] and a theoretical analysis was given in

[4]. In this paper we extend some of the ideas in [5,4] and will emphasize a new technique

suitable for solving large nonlinear least-squares problems.

When defining a nonlinear Krylov subspace method, there are two possibilities. First,

one can use a globally convergent modification of Newton's iteration [8]. The linear systems

that arise in the course of the Newton iteration can be solved by either a direct solver or they
may be solved approximately by an i_erative method. The class of methods based on the

latter approach is termed inexact Newton methods and several such methods were considered

in [1,2,3,5]. Newton's method is essent;ally a linearization procedure. The mapping F is
locally approximated by a linear function and the resulting linear equations are solved to

yield the next point. The second approach to solving nonlinear equations does not rely on

linearization. Thus, fixed point iterations are inherently nonlinear as are descent methods

with accurate line searches. Another well-known example is that of the nonlinear conjugate

gradient iteration.. In this paper we will discuss two methods, one in each of the two classes.

This distinction carries over to the definition of projection methods. In contrast with

the linear case, given a subspace K there are many different ways of defining a projection

process, of a Galerkin type, on the subspace. We can define a projected problem that is
linear or nonlinear or a combination of both in a sense that will be clarified later. The

advantages and disadvantages of each of these approaches is far from obvious. Certainly,

solving a purely linear projected problem carries the advantage of simplicity. On the other

hand, it may be the case that by linearizing locally, the function F will not, be approximated

well eIlough globally, and this is likely to result in a poor global convergence of the outer
iteration.

We address the problem of solving a large nonlinear system, as well as that. of minimizing a

flmction from R x to R N. The solution methods proposed can indeed hamtle both l)roblems,
all(l the theory is often identical for both cases.
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2 General Nonlinear Projection Methods

Iv, this section we i:Itrodv,"e the basic ideas of nonlinear projection methods. Wc start with
an overview of the different possibilities for defining nonlinear projection techniques. We
will then consider the particular case where the subspaces used are Krylov subspaces.

We are interested in solving the nonlinear system

F(u) = O, (2.1)

or minimizing the function
1

f(u) =  llF(,,)ill, (2.2)

where F is a nonlinear function from R N to R N.

At each iteration of a nonlinear projection method we select a subspace K, and we seek
an approximate solution to (2.1) or (2.2) of the form u + 6, where 5 belongs to the subspace
K and u is the current iterate. We emphasize that the subspace K changes at every step of
the nonlinear iteration. The standard case examined in [5] is when I{ is a Krylov subspace
associated with the Jacobian of F at the current iterate. The various nonlinear projection
methods we consider differ in the way the vector 5 is chosen in the subspace.

For both (2.1) and (2.2), a natural choice for the next iterate is to se)ect a vector 5 in K
such that

f(u + _) =_½llF(u+ 6)11_ (2.3)

"I

is minimized. Note that although this is a nonlinear least squares problem, from a practical
point of view it is much easier to solve than the original problem if the dimension m of K
is much smaller than N. The motivation for this approach is that one can exploit a number
of highly efficient packages, such as MINPACK, for solving least squares problems of small
dimension, such as (2.3).

Let V = [vx,v2,'", v_] be an N x m matrix whose column vectors represent an orthonor-
mai basis of the subspace K, and write 5 as 5 = Vy, where y is an m-vector. The function
(2.3) to be minimized becomes a function cf y defined by

.q(y)=  ilF(u + VY)ll . ('.?.4)

The gradient of this function at y is given by

Vg(y) = I'Td(u + Vy)'rF(u + Vy), (2.5)

wh('r(. J(x) is the Jacobian of F at the point x E R u. Notice that the gradient of f is
V.f(_) = .I(_,)TI@,_ and so we have the simple relation Vg(y) = VrVf(u + Vy).

A necessary, but not always suMcient, condition for y* to 1)e a minimum of (2..1) is that
(h(' gra(li('n( of.q a(, !i" vanishes, i.e., we must, have

l"r,l(u + l'y')'r/,'(. + Vfl') = 0. (2,6)
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This suggests simply salving the equations,

_1_,,_,, + V.V)v)'r F(,,z + l"y) = 0 _-._"v_.,

as a means for finding a minimizer of (2.4), although we know that the set ot solutions of

(2.7) is larger than tile set of minimizers of (2.4). We refer to the above system of nonlinear

equations as the set of normal equations for minimizing (2.4).

When solving the above normal equations, the 3acobian must be reevaluated at each new

iterate and this may be uneconomical. An alternative is to freeze J(u + Vy)V to be the

system of vectors computed at, say, y = 0 and solve the set of modified equations:

(a(u)v)ry(u + Vy)=0 (2.8)

This is a particular case of tile Petrov-Galerkin condition

W TF(u + Vy) = 0, (2.9)

where W is an N x m matrix. Two particular cases are noteworthy:

1. W = V which corresponds to the Galerkin case.

2. W = JV which was naturally derived above;

When F is linear of the form F(x) = Ax - b, the first case corresponds to the conjugate

gradient method, if F is symmetric, and Arnoldi's method when A is nonsymmetric, while

the second method corresponds to the class of methods based on minimizing the residual

norm, a few representatives of which are ORTHOMIN, GCR, and GMRES. See [14] for
details.

Finally, one may linearize F(u + Vy) in (2.9) around u and derive fully linearized tech-

niques which correspond to solving the linear system

Wr[F(u) + J(t0Vy] = 0, (2.10)

where J(u) is the Jacobian of F at the current iterate u. The above linear system is rn-

dimensional, and will admit a unique solution if the m × rn matrix wTj(u)V is nonsingula.,-.
In the particular case where W = JV this condition is satisfied when the columns of JV are

linearly independent. We observe that (2.10) is a way of approximately solving the Newton

system F(u)+ J(u)5 = 0, at, every step of Newton's method for solving (2.1). Thus, the filly

linearized tedmiques are a l)articular case of a class of methods that are commonly referred

to as inexact Newton methods, and have been studied in the literature, (s¢_, e.g., [7,1,5,4]).

If at, every step the projected system (2.10) solves the linear system J(u)5 = -l.'(u) exactly,

tllen the method becomes the standard Newton iteration. The interesting cases are again
wh(,n IV = I' and I1' = .I1"
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3 Fully linearized techniques

Ill • I ' _,' _ 1 ' 1 I
LIIJ._ _(2(..LI()II _¢.* UIII_ (()llbidcl t}l(_' lulls ]lJl('aliZ(:'! llJ('[]J()d_ ill [,h( _ b('[15(" d(']l|i('(| d]l()V(' all(|

sununarize the results obtained ill [5,,1]f,;r this (as('.
We start by recalling tile nonlinear version of th(. Arl,oldi (GMI_ES) algoritlmi At every

outer iteration the algorithm generates an orthonvrmal system of ve( tors v, (i = 1,2, • -., m)
of the Krylov subspace K" and then builds the vector ¢5("'). The Krylov subspace K m is
defined by

K m = E(.I,r,m) = span{r, Jr, J2r, .. .,Jm-lr},

for an arbitrary vector r and N x N matrix ,l.

Algorithm : Newton-Arnoldi (Newton-GMRES)

1. Start: Choose uo and compute F(uo). Set n = 0. Choose a tolerance e0.

2. Avnoldi process:

• For an initial guess 6(°), form r (°) = -F- j6(o), where F = F(un) and J = J(u,).

• Compute fl = IIr(°)ll2and v, = r(°)/fl.

• For j = 1,2,.-., do:

(a) Form Jv 3 and orthogonalize it against the previous vl,-.., vj via

hij =(Jvj, vi), i= 1,2,...,j,
3

vj+l = avj - _ hl,jvi (3.11)
t----1

h,+,,,= I1':>,11=,and
v_+l = _3S+l/hj+l J.

(b) Compute the residual norm pj = [IF + a60)[[2, of the solution 60_ that would
be obtained if we stopped at this step.

(c) lr/,, < e_ set m = j and go to (3).

3. Form the appro.rimate solu,,,,n:

Arnoldi: Define Hm to be the m x rn (Hessenberg) matrix whose (possil)ly) nonzv,'o
entries are the coefficients by, 1 < i < j, 1 < j < m and define V_ = [_,_,v2,'.., v,,,]

• Find the vector y,,, which solves the linear system llmy = fie1, where e] =
(!,o,...,o]

• Coml)utc (5("0 = 5(0)-? z (m),where z (m) = _/mYm,and u,+l = u,_+ _('").

GMRES: l)cfine I1,,, to I_(,the (71_+1) X m (llosse,d_crg) matrix whos(' nonzero ('nlri('s

at'(' the coefficients bv, 1 < i < j + 1, 1 5_ j _<?,zand (lefin(, V,,, --=[¢'1,t'2,'", v,,,].

5
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• Find the vector y,,, which minimizes H/Jc, - lt.,yl]o, where c, = [l,0,.. ,0] r, e'::,r
all vectors y in R'".

• Compute (5(") = _5(°)+ z (m) where z (m) = l_;,,ym,and u,,+l = u,_+ c_("0.

4. Stoppin 9 test: If u,+l is determined to be a good enough approximation to a root of

(2.1), then stop, else set u,__-- u,+l , n +--n + 1, choose a new tolerance e,, and go to
(2).

Therefore, in both Arnoldi and GMRES the outer iteration is of the form u.+l = u,,+6("')
whore 6("`) = 5(0)+ z (m), with

z (_) = V,_y,,,,

and y,,, is either the solution of aD m × m linear system, for Arnoldi, or the solution of an
(m + 1) × m least squares problem fo:"GMRES.

To guarantee global convergence, the usual inexact Newton metkods must be modified
in several possible ways. A few such modifications have been proposed in [5] and analyzed
in [4]. The simplest of these involves a backtracking line-search procedure which we now
consider. Given an iterate u_ we define the next iterate in the form u,, + Apr., where p, is
any descent direction and A is selected by a procedure which ensures that the function f
decreases sufficiently at each iteration and that the iterate mak_ sufficient progress towards
the solution. One such procedure based on line-search backtracking is described below. The
search direction p,_ is provided by an approximate solution to the Newton system J(un)p =
-F(u,), e.g., via Arnoldi or GMRES as indicated above. It is easy to show that p, is a
descent direction at u,, whenever we have

IlF(u,) + J(u,)P, ll= < IlF(u,)ll=,

which means that the residual norm for the Newton system J(u,_)p := -F(u,) must be
strictly reduced from that associated with p = 0. In particular, it is common to require that
a condition of the form

liE(u-) + J(u-)P-ll= < n.llE(_.)ll=,

where 7/,,-< r/< 1, in the context of iterative methods.
In the procedure described below the two parameters 0,,_., 0m_=are such that 0 < 0_i. _<

0m_=< 1, the simplest choice being 0ml. = 0m_ = 1/2. The procedure requi,es another
parameter e° > 0 which is used to essentially rescale the initial step to prevent it from from
being too small.

Algorithm 3.1: General Backtracking Procedure

W/(u.)rz_l /
1. Sot A = max{ 1, t" IIp.ll_ 1"

2. If f(u, + Ap,,) < f(u,) + ¢_AV.f(u,,)'rp,,, then set A, = A, and exit. Else:
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a. Choose _ c [0min,\,0mnx_]; set A *-- i. Go to (2).

The following theorem tr'll, is a general convergence result for :_cquences generated by the
above algorithm.

1 2
Theorem 3.1 Let f =_ _I]F][2 be differentiahlc and assume that its gradient is such ;t,_

[IVf(x) - v/(v)ll2 _<" llm- vll2, for all x,y E R N. ( ,

Let p,, be such that IIF, + &P, II2<-nll&ll= for all n, with 71< 1. Further, let each iterate be
chosen by the General Backtracking Algorithm. Then, either

lim f(u,,) = 0 (a.la)

or

lirn Ilp,,ll2 = co. (3.14)

Moreover, superlinear convergence will essentially take place with the additional condition

that _ in the theorem is replaced by a sequence r/, --+ 0. Global convergence of a method

using a model trust region approach has also been examined in [4].

One of the most successful ways of using nonlinear Krylov subspace methods is for solv-

ing nonlinear equations in which the Jacobian of F is not available or is too expensive to

compute. The reason why we can still use the methods outlined above is that Krylov sub-

space methods do not require the Jacobian matrix d explicitly, bat only its action on an

arbitrary vector v. This action can be well approximated by a difference quotient of the form

F(u + av)- F(,,)
J(u)v _

(9"

where u is an approximation to a solution of (2.1), and a is some small scalar. The above ob-

servation has been exploited in several papers [15,1 1,10,6] to accelerate fixed-point iterations
of the form

un+, = M(un)

by applying the above techniques to the system F(u) =_=_u - M(u) = O. Typically, the

Jacobian of the mapping F is a dense matrix and it may be impractical to compute it for

large problems. Brown [1] has given a local convergence analysis of Newton-Krylov methods
employing the above approximation.

l Note that the cost of producing the aa(obian may well take rote account the initial programmi,ig effort.
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4 Least squares projection methods

A nonlinear Kry!ov subspacc algorithm using a lc_st squares approach can t)c l_ricfly d,_-
scribed msfollows.

Algorithm : Least Squares Krylov Subspace Method

1. Start: Choose the initial approximation u and compute F(u).

2. Arnoldi process:

Generate the orthogonal basis Vm of the Krylov subspace K_(J(u), Vl), starting with
Vl = f(u)/llF(u)ll2.

3. Solve Projected Nonlinear Least Squares Problem: Solve fo__y:

1

minyf(u + Vmy) (----_IIF(_+V_y)ll_), (4.15)

and set u ,- u + Vmy.

4. Test: If satisfied then stop. Else goto 2.

There might be an ambiguity in defining the solution y in step (3) when the minimum is
not unique. As will be seen later, ideally, we would like to choose tae solution that is closest
to u, but this may be difficult to achieve in practice. We will come back to this shortly. The
attraction of the above algorithm is that there are no serious difficulties defining the iterates.
In theory, the potential problems are that the s3lution at every step is not unique and that
the sequence does not converge. However, the main disadvantage is that at every step an
exact search in a whole subspace must be carried out. In practice, the least squares problems
need to be solved only approximately. We require that the function f decreases_ but like any
other descent method, the monotonic decrease of f(u,) does not guarantee convergence of
the sequence {u,}. One way in which this may be achieved is to demand that the decrease
in f at every step is sufficiently large. We would like to show a number of conditions to
ensure that

en - Vf(un) T 6"
I1_,11_ (4.16)

converges to zero, where _,_= u_+l - 'u,_. Typically, when lim,_._ _ = 0, the sequence u,,
will converge to a solution u. under fairly mild conditions.

If we were to perform an exact search in the subspace K then the following condition
must be satisfied:

vrJ(_,,+ v.,/')rP(u,,+ vu') = o, (,1.17)
which reads

V'rVf(.u,,+_) = O. (4.18)
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In other words the new gradient of f must be orthogonal to tile previous subspace of pro-

jectior. In practice, one may tirst select some 'un+l and then verify whether tile simpler
condi_; ,U

T I _)fi,,V.f,u,_+, ) : (4.19)

is satisfied or nearly satisfied.

The above condition is still too stringent, since it requires solving a nonlinear equation in

one variable, and we wish to find a set of conditions that tim approximate solution to (4.19)
must satisf- in order to ensure convergence. Tile next theorem establishes such a result.

Theorem 4.1 Let f : R N ---, R, be a continuously differentiable function on R N with

r(z) .>_O, for all z C R N, and such that there exists a constant "7 > 0 for which

IIVf(z)- vf(u)ll_ __-rllz- ull_ (4.20)

for every u, z E R u. Let a > O, 0 <_ # < 1 be given, and assume that a sequence un, n =

0,1,..., can be constructed so that at each step u,,+l = u,, + 5n. where 5,, :_ 0 and the
following conditions hold,

Vf(u,,)T6,, < 0 (4.21)

Vf(un+l)r6,_ > _Vf(u,)T6,_ (4.22)

f(u,,+,) < f(un) + o_Vf(un)T_n. (4.23)

Then,

,!i_o;Vf(u.)r 1ls.ii_ - 0. (4.24)

There are a few differences ketween this result and that of Theorem 6.3.3 of Dennis and

Schnabel [8]. First, the parameters # and a are basically unrelated, but unlike the theorem

in [8] this result does not guarantee the existence of the sequence u,_, which will be considered

sepa_'ately. The proof is also different and is more related to the proof of a similar result for

Altman's principle given in [12]. Note that condition (4.2." j can be viewed as a modification
of Altman's principle.

Proof: From (4.21)and (4.22) we have

0 < (p - 1)Vf(u,,)T6n _< (Vf(u,_+,) - Vf(un))715.,

_< IlVf(u,,+,)- Vf(u,,)ll2.11_.112.

tlence, using (4.20) we obtain,

5,

0 _< (p- l)Vf(u,,)'/'llS,,ll------_2< 7H5,,112. (4.25)

i.t"rom condition (4.23) and the a],ove inequality we get

_,, c_(l-IL)[ -'r t_,, ]2
f(u,,)- f(un+,) >_-o113.1t2Vf(u,,)'rll_,:l1-2 > "_ [Vf(,,,,,) _-U,,I_] (4.26)

9
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Since the sequence f(Un) is decreasing and f ,s bqunded from below, tim sequence f(u_,) -

f(Un+l) converges t-_ zero, and as a result of (4.26) the sequence Vf(u,)Ta,,/[la,,]]2 also
converges to zero. r2_

Often, the condition (4.22) is replaced by the so-called/3-condition

f(u,,+,) > f(u,) + flVf(u,_)T£, (4.27)

In fact, the same result can be shown if we replace (4.23) by (4.27).

Theorem 4.2 Let f be a .function that satisfies t_.e same assumptions as Theonem (4.1).
Let a > O, 0 < /3 < 1 be given and assume that a sequence un, n = O, 1, .... can be constructed

so that at each step u,,+_ = u, + 6, and the conditions (4.21), (4.28) and (4.27) hold. Then,

lim 7 f(u.) T 6,
,--.o, H£,II2 - O. (4.28)

Proof: We will show that th( relation (4.25) is valid with/a replaced by/3. Using the
mean value theorem we write

f(u + 6,) = f(u)+ Vf(u)T6n + [Vf(u +06n)T6, - Vf(u)T6,]

= f(u)"4- /3Vf(u)T6n + [(1 --/3)Vf(u)T6,, + (Vf(u q-Od,)T6, - Vf(u)'r6,)]

=_ f(u) + flVf(u)T£, + [(1 --/3)Vf(u)T6,, + []6,H2(] (4.29)

where we have set ,'or convenience

( -_ Vf(u + 06,)T6,,- Vf(u)r6,
, 116.11o.

Note tha_. from the assumptions we have

1(1= I(Vf(u + 06.) - V f(u)) T _l < -r0116.11:
< -_ll6.112 (4.30_

The relation (4.29) together with the/3-condition (4.27) imply that

(1 -/3)Vf(u,)T6, + 116.112_">_0

With the inequality (4.30) this immediately yields

_II6.11= _>_(1 -/3)Vf'r6. (4.31116.11_
[]

It remains to be shown that we can always select a sequence u,_ provided 6, is a descent

direction and it and (_ are carefully selected.

10
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Theorem 4.3 Let f : R x _ R be continuously differentiable 07, R N with f(z) > 0 for all

z C R '\. Let u,6 C R x be suclt thoi Vf(Tt)T6 <. 0. 7'h_n given 0 < (_ < tl < 1, there exist

.,_ > .\t > 0 such ,,,,,,'""' u + ,\_ o,,,..j_o--':':'- t-_.._..) ,,,,,:' '4.23) fi,, ,,y A 6 (At. A_).

This result is well-known and the proof may be found iu Dennis and Schnabel [8]. A

similar result for the fl condition, can also easily be established, s_ for example [4]. Note the

proof suggests that condition (4.23), which is the usual a-condition of Armijo and Goldstein,

will always be satisfied if we replaced 6 by A6, with a small enough A. As is also indicated

by the proof of Theorem 4.1, the purpose of (4.22) is to prevent the step size A6,, from being
too small.

The above theorem resembles Altman's principle [12] of which it is a more practical

version. Convergence of sequences built from Altman's principle can be proved as a corollary
to the above theorem.

Corollary 4.4 Let f : R N ---*R be a function satisfyin 9 the assumptions of Theorem 4.1.

Let 0 < # < 1 and define a sequence {u.} by u_+_ = u. + )_np,,, with V f(u.)Tp. __ O, and

where A, is the smallest positive root of the equation in A,

Vf(u. + Apn)Tpn = ltVf(un)Tpn (4.:32)

Then the conditions (4.21), (4.2# and (4.23) of Theorem 4.1 are satisfied, for anya e (O,l_),

with 5,_ = A,,p,,. In addition, f(u_. + Ap,) <_f(u,.) for any A in the interval [0, A,].

Proof: The conditions (4.21) and (4.22) are obviously satisfied. To prove (4.23), we use
the Mean Value Theorem which tells us that there is a certain O, between 0 and 1 such that

f(u,_ + Anpn)- f(u,,) = Vf(u, + OAnp,,)rp,_ (4.33)

Define the function of A

s(A) -- V f(u,, + .kp,_)rp,, - t, V f(u,)Tp,,.

We have that s(0) < 0. Also, since )_, is the smallest positive root of (4.32) and Vf(un)7'pn <_
0, by continuity of s(.\), we must have

Vf(u,_ + ._p,_)Tp,_ _ l,Vf(u,,)Wp,_ <_0 for all )_ < A,,. (4.34)

Therefore,

f(u,, + A,,I,,_) -.f(u.) = "Tf(u,, + OA.p,,)Tp,, < ttVf(u,,)Tl,. <_ nVf(u.)Tp. (4.3,5)

for any o G (0, it). The second 1)art of the corollary follows immediately by replacing A,, by

.\ in (.1.33) and then exploiting (.1.3,1). rn

Assume now lhat w( are to solve the local ol)timizal ion 1)rol)lem at, ('a('h step exa('l ly. 'l'h('

,_,'ar(h ow,r lh,, wllol_' sul,sl)a('e will I)e dillicull and w(, n_lsl a,hl a few a(hlitional conslrainls.
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We consider two possibilities. First, we may restrict the search to be in tile level set of f at
,L,,, i.e., to the subset

L(,,,) - {eS_. I,:"l.f(,,, , + 5) 5 .f(u.,)} /,1.36)

This results in,

f(u,,+,) = min{f(u, + 6)[5 C L(u,,)}. (4.3r)

Note that if there is a descent direction in K, as is always assumed, the subset Ln will not
be reduced to the single point {0}. We do not know whether the minimum in the above
problem is reached without any additional assumptions. Here we will assume that the initial
level set L(uo) is compact so that all subsequent level sets are also compact.

A more restrictive possibility is to search only among the candidates u of K,, such that
the whole interval [0,5] is included in the level set L(un). Here the interval Ix, y] denotes the
set of all points of the form tx + (1 - t)y where t E [0, 1]. This results in the definition,

f(u.+l) = min{f(u,, + 5)1[0, 5] C L(u,_)} (4.38)

This condition on 5 implies that vfT5 < O, in the differentiable case. Again, if there is a
descent direction in K m, the set of admissible points in (4.38) is not reduced to the single
point un.

Although we will not show that the other assumptions of Theorem 4.1 are satisfied, we
will establish that its conclusion is valid.

Corollary 4.5 Let f : R N ---+R, a function satisfying the assumptions of Theorem 4.1 and
such that the initial level set L(uo) is compact and there is a descent direction in Km. Let

{u,,} be defined by un+, = u,_+ 5,_ where 5,, is defined through either of (4.3"1) or (_.38).
Then,

5.

lirn V f(u,)r]]5,,H 2 - O. (4.39)

Proof: We will use an argument borrowed from [12], referred to as the "comparison
: principle." For this we select an arbitrary # < 1, for example # = 1/2, and an arbitrary

a < p, for example c_= 1/4. From u,_ we create an auxiliary iterate u,,+l that satisfies the
assumption of Corollary 4.4 with pn = 5,, = u,,+l - un. Since there is a descent direction in
K m then p,, cannot be zero. We can assume, without loss of generality that Vf(un)Tpn <_O.
If not we only need to change the sign of p,,. From Corollary 4.4, the assumptions of Theorem
4.1 are satisfied and therefore the inequality (4.26) in the proof of the theorem hohls, with
u,,+l replaced by/l,+1 (and p,, replaced by ._,,Pnbut this has no eft ,'t):

f(u,,) - f(it,,+l} >_c_(17- #) Vf(un) _ (4.40)

Note that by the second part of Corollary 3.3, iin+l is a.dnfissible for either (4.37) or
(,I.3S). As a rosult, fiom 1be definition of un+l it is oh'at that f(u,,+l) >_ .f(u,,+l), and
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substituting this in (4.40) yields

f(u,,)-f(u,,+,) > _(1- tz) [ , "T 5_] 2__ 77 _f(u,,) (4.41)

Now the proof of Theorem 4.1 can be completed in the same way to establish the desired
result. []

5 Numerical Experiments

As a simple example, we consider the nonlinear partial differential equation

- Au + au_ + Ae" = f (5.42)

ovcr the unit square of R 2 with Dirichlet boundary conditions. This is a standard problem a
simplified form of which is known as the B,'atu problem [?]. After discretization by 5-point
finite differencing, we obtain a lazge system of nonlinee- equations of size N, where N = n, 2
and n, is the number of mesh points in each direction. The right hand side f is chosen
to be the zero vector. It is known that for A > 0 there is always a unique solution to the
problem, see [?]. In this test we took a = 0.1 and n, = 16 yielding a nonlinear system
of N = 225 unknowns. We tested our preliminary version of gmrls with three values of A,
namely A = +5.0,-7, and -10.0. In the first two cases we found a solution to F(u) = 0
but a solution does not seem to exist for *,h,"case )_ = -10. Thus, for A = -10, our
code computes the minimum of ]lF(u)]]> The code incorporates an automatic switch to a
nonlinear least squares projection technique, based on a simple test on the a-condition. If
the GMRES solution is not admissible, a nonlinear least squares solution method, namely
the routine Imdif from MINPACK, is called to minimize f(u + Vmy) as was described earlier.
The tolerance a for the admissibility test is set to a = 10-3.

We show the following information for each case.
\
fflag - The termination flag (see below);
Icount - The total number of function calls performed;

Ntis - The total number of function calls that h_ve been made by the
the nonlinear least-squares routine in the projection process;

Nil - Total number of outer iterations;
Nlsi - The total number of calls to the nonlinear least-squares

solver.

_he stopping test involves three different criteria. The first is on !.he falue of .f. The
p,'ogram is ,_,_pped as soon a.s f < toll, and hqag takes the output va.hw one. The second
test wlies on the vahw of Vf(u)Ts/[[_SH2. The corresponmding flag is I/Tag=2. Finally, the
third criterion is on the norm of the step/5 = u,,+l -u,, and tile cor,'esponding [lag is I//ag=3.
l"or all three tosl.s 1]10 lolcrance was set to 10-_.
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A l)imens. /flag Icount Nits Nil Nlsi
-_0.0 m = 10 2 35OI 2949 .51 49

m = 15 2 1288 1050 14 13

-7.0 m = 10 2 629 432 17 9

m = 15 2 436 319 7 4

5.0 m = 10 l 67 0 7 0

m= 15 1 62 0 5 0

Table 5.1: Numerical results for the Bratu problem with different values of A

Notice that for the harder case when A = -10, most of the projection steps are nonlin-

ear. The least squares problems arising in these methods are solved by MINPACK and their

• solution is sometimes rather expensive. Another consideration here is that we do not precon-

dition the equations. Preconditiving, e.g., by the Laplacean could reduce the computational
work in a substantial manner.
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